11/2/24, 1:28 AM Linux auditd for Threat Detection [Part 1] | by IzyKnows | Medium

Openinapp /1 C) Signin
Medium Q Search

Linux auditd for Threat Detection [Part 1]
Q IzyKnows - Follow
I minread - Jan 26,2022
@ Listen [ﬁ Share

Part 2: Linux auditd for Threat Detection [Part 2]

A few years ago, I was asked to define an auditd configuration which would serve as
the primary detection technology for a large organization. While I had a fair
understanding of Linux systems, I found surprisingly little on utilizing auditd for at-

scale security monitoring purposes.
The topics I look to cover in this article are

¢ Quick intro to the Linux Audit System

Tips when writing audit rules

Designing a configuration for security monitoring

What to record with auditd

e Tips on managing noise

The end audience for this article is the security practitioners, IR, blue teamers who
need to define what logs they need in their STEM to detect bad activity. Going
forward, I'm hoping things will get a lot easier with ePBF but we've never been good

at completely eradicating older technologies now have we? :)

There may be better ways to configure and utilize auditd, so feel free to share your

experiences and I'd be happy to incorporate them here.

https://lizyknows.medium.com/linux-auditd-for-threat-detection-d06c8b94 1505 117

11/2/24, 1:28 AM Linux auditd for Threat Detection [Part 1] | by IzyKnows | Medium

The Linux Audit System

The Linux Audit system provides a way to log events that happen on a Linux system.
The recording options offered by the Audit system is extensive — process, network,
file, user login/logout events, etc. In this series, I only focus on the security-relevant
events from a detection standpoint. The entire list of types that can be recorded are

listed here. This list will come handy when analyzing logs.

By default, the packages required to use the Linux audit system are installed on
many common distros. I won't be covering the installation part here. “auditd” is the
audit daemon that leverages the Linux audit system to write events to the disk. User-
space applications make system calls which the kernel passes through certain filters
and then finally through the “exclude” filter. The filters are important when it

comes to writing auditd rules. I really like the diagram from Red Hat explaining it.

Kernel

User

Processing

Systarmca" s G

©0

Exit

Exclude

Application Audit daemon

Audit System Architecture (source: RedHat)

By default, log files are written to /var/log/audit/audit.log. You may find multiple
audit.log files in the above directory all of particular max length.

The two files we particularly care about in the audit system are

e audit.rules: Tells the audit daemon what to record. This is where most of one’s

time should go — deciding what events are most important to you

https://lizyknows.medium.com/linux-auditd-for-threat-detection-d06c8b94 1505 2/17

11/2/24, 1:28 AM Linux auditd for Threat Detection [Part 1] | by IzyKnows | Medium
¢ audit.conf: Governs how the audit daemon runs. Log file location, buffer size,
log rotation criteria, etc. I would not mess around too much with this file, but
we’ll get to some important parameters of it later

The above was just a brief intro. There are better explanations of the Audit
subsystem out there. The link to RedHat’s docs I mentioned above is a good one.

Other good documents I can recommend are — Understanding Linux Audit from

Suse, The Linux Audit Documentation Project

Writing Audit rules
What you specify in the audit.rules file is what finally lands up in the audit.log.
When the audit daemon (auditd) is started (ensure that’s on system startup), rules

defined in this file is what gives you events in the audit.log.

The audit.rules file is located in /etc/audit/audit.rules. This is the final file that
auditd refers when writing events to disk. Why I mention this is because, as

mentioned at the top of the etc/audit/audit.rules file,
| ## This file is automatically generated from /fetc/audit/rules.d

That doesn’t mean you can'’t add to it manually. However, in a large environment,
you may have different rule files managed by different parties, that need to run
together. You can place these different *.rules files within the /etc/audit/rules.d/
directory. A utility named augenrules does the job of compiling the different *.rules
files (in natural sort order) into the final /etc/audit/audit.rules . It’s worth
mentioning that augenrules strips away comments and empty lines before
generating audit.rules. I mention this as I've been accused of ridiculous things on

this point in the past.

Coming to the rule writing. Let’s focus on the 2 types of rules that we’re interested in

configuring
o File watches — can watch read, write, execute or attribute changes

o Syscalls — record syscalls sent to the kernel by the application

I'm not going to go into the depths of writing auditd rules, I recommend reading the

man page for that.

Some good references to look into when writing rules

https://lizyknows.medium.com/linux-auditd-for-threat-detection-d06c8b94 1505 317

11/2/24, 1:28 AM Linux auditd for Threat Detection [Part 1] | by IzyKnows | Medium

Inbuilt examples — https://github.com/linux-audit/audit-

userspace/tree/master/rules

MITRE-based rules — https://github.com/bfuzzy1/auditd-
attack/tree/master/auditd-attack

Florian Roth’s best practice ruleset — https://github.com/Neo23x0/auditd

https://slack.engineering/syscall-auditing-at-scale/

A few notes to keep in mind when building rules

Utilize tagging — audit rules allow for tagging (-k) which is very helpful when
analyzing events later. You could use your own custom tags or even tag rules
with MITRE IDs (see bfuzzyl’s link above)

When monitoring syscalls, it’s often better to monitor the syscall upon exit
rather than entry (-always,exit). Important parameters may not be available at

the time of function entry because they aren’t defined yet, hence you miss it too

When doing syscall auditing always try to combine rules where you can (-a
always,exit -S rmdir -S unlink -S rename). Each syscall rule gets evaluated for

every syscall every program makes. It adds up, thereby impacting performance

When writing rules, you may come across a filter criteria “F auid!=4294967295’.
This number is the equivalent of 0OXFFFFFFFF which is the highest unsigned int
number. It evaluates to -1 which in auditd world is equivalent to “unset”, i.e, it’s
not defined yet. It's common for this to happen with processes that initialize

before the audit daemon. As in the audit.rules man page —

“The audit system considers uids to be unsigned numbers. The audit
system uses the number -1 to indicate that a loginuid is not set.

This means that when it’s printed out, it looks like 4294967295.

But when you write rules, you can use either “unset” which is

easy to remember, or -1, or 4294967295. They are all equivalent.”

A note on exclusions — ensure your exclusions (-a never,exclude) are specific
and placed on top so they get matched first. There are debates on whether
specific includes or excludes should go on top. Specific includes would be the
best for performance but I don't find this a feasible option for large

environments. Often times, the syscalls (like execve) are where you gain

https://lizyknows.medium.com/linux-auditd-for-threat-detection-d06c8b94 1505 4/17

11/2/24, 1:28 AM Linux auditd for Threat Detection [Part 1] | by IzyKnows | Medium
maximum visibility from a security detection perspective. Were you to place

them right on top, you'd have little scope for performance tuning thereafter.

Configuration of the Audit Daemon

There are two places you can specify configurations for the audit daemon. One
place is directly at the top of the audit.rules file as control rules and the other is in
the audit.conf file. The configurations you can modify in both these places differ.
Unless for a specific reason, I would not toy with the configurations of auditd except
for a few

Backlog size: This can be set by using the -b keyword followed by the number of
audit messages to buffer. The backlog option limits the number of messages that can
be queued up waiting to be written to the log. Here, it’s recommended you start with
the default and work your way up. On production level systems, I've seen 8192 as a
feasible option. When the limit is breached, you should see a “backlog limit
exceeded” in the logs and that can be your indicator to increase this buffer. Keep in

mind, the higher buffer value, the more memory consumption on the system

Failure flag: Set with -f, it instructs auditd what to do when the above buffer is full.
In production systems, you definitely don’t want disruption hence I recommend

setting this to 1 so it prints in the log and nothing else

Enabled flag: Set with -e, can help ensure your audit configuration is not modified,
i.e, immutable. Setting it to 2 will ensure that any changes will be denied and logged.
Only a restart of the system can change the configuration. Remember, ensure this

rule is the last rule in your ruleset.

These are all the configuration files I'd recommend modifying. The audit.conf file
you can have a look into but normally, I wouldn’t change too much there. Depending
upon your environment and if you want the auditd daemon to deal with, for
example, what to do when the log file is full, the audit.conf file may be worth

looking into. Normally, the default value have worked for me.

What to record?

https://lizyknows.medium.com/linux-auditd-for-threat-detection-d06c8b94 1505 5117

11/2/24, 1:28 AM Linux auditd for Threat Detection [Part 1] | by IzyKnows | Medium
The Linux audit subsystem allows us to record a lot of information. The question I
look to provide some clarity to is — what’s worth recording and what isn’t?

First, let’s have a look at the most relevant data sources from MITRE.

Mast Relevant Data Componenets (Top 15)
Enterprise Techniques

Command Executkan

Process Creatian

File Modification

Fite Craatsan

Netwark Traffic Content
Netwoark Traffic Flow

05 APl Execution

Yoindows Registry key Modefication
Module Load

Application Log Content
Netwark Connection Creation
File Access

Logon Session Création

File Metadata

User Account Authentication { 13

0 40 60 1] 100 120 140
Count of Sub-Fechniques

Source: https://github.com/mitre-attack/attack-datasources

The above graph is based on Mitre’s ATT&CK Enterprise framework and the data

source that is associated by different sub-techniques in the framework. As we can
see, majority of the techniques are detectable by command execution and process

creation events. Reason being, these normally contain the command line executed.

Coming back to auditd, majority of these data sources can be monitored by auditd
(at a price of course). Here’s my shot at correlating the above list with auditd record

types that give us this information.

Data Source MITRE I AvadablefUselul Fields Auditd Rule Natas
Eommund Exrcuton Toa3 11000 681, 11035 00F 10803603, 1] Commund bre_wier, pid, paremt precen a cabwarp, wxit A eveove
Protesd Crealish TS0, T1003 000, T 007, TLOLS, TI012.T10 Corvrasd S, wier, gl paient plodeid abwiry, €3t 5 Eabive
Fite Mambfaratann TIoREF1036 COLTINIT, TLONT000, F1037 Whar, M, poogriem uud oo maufily W TN radednod - wid
e Cregtion TLE T TI0YI. 008 TI00T, TLONT, 000, 71037 U, Bl -w Pl i manier p =
At bal, monidnring commands bbe curd paplkcrtly, weuld gt you
Bietwrerk Tralfe (octent T 1001, TG00 00, T1000 005 TEN LA M/ Mia the tufl eommand e
Hetwoe Tralfe Fow TIo0 3, T 1003 G0es, T100E, TLOL S, T101 1001 Destenption, intinting esr a atwaynealt S aomen P brf i on volume
5 P Eaimion TLo03, 71003 00L.TI0E0, TEOLD F1916, TI0 M/ A Wodve 3kt el dereitly monitoning seall
‘Wirdows Reg Dry Wodficsgon TR 1056001, 71070, TEILE, TIEIZTIT MR LTS
& dhwayy, ras -5 it modele -4 int_module 4
Bebodute Lzad TEeE D055 001, F1030, TR, 11812, T21 Madufie beaded, program wned, inar delete_meodule
Al atien Lig Comtent Thoes, T1063 00, TI0PT, TEILG T R10.001 Mrs Mia
Bietwies Lo ign Creamon TERL 003, T1030 0L TINZL 03], TEEG 1A e ssranans, inetialing éxg - Abwary, et R oonnet
Hie Acoesn TLO01,007, 11000 000,11 00ROCT, TLI0105 Fike, program wed, woer v [T i mandion -p rw
Eogon Sersion Creation Trag 11011001, T 1021.000, TLor 1004, 1148 MiA
Tide Mictdits TLOEF E1GIT000 TI0RT. 00, TLOR Y004, T1Fide, attribbe chirygi, Lty w e flof manilee f owil

bty st B eoiolen g b, briThogl, m1Fos, LA, 1L £ah
b wnbd, 13 3 0 iy B0 e s ration g thes mith
Wuer Accoast huthenbcation TR 100000, TI0WE, TLOTE.001, TI0TA U, program e, et PP ISR _AUTH thouid phve you this at fhe least susktd 1 80 recomamend manitoring vas o iveoens or auth log

Data Source to Audit Rule Mapping

https://lizyknows.medium.com/linux-auditd-for-threat-detection-d06c8b94 1505 6/17

11/2/24, 1:28 AM Linux auditd for Threat Detection [Part 1] | by lzyKnows | Medium
Because Medium is a bitch with formatting, the above is an image. I've also
uploaded the same here: https://github.com/izysec/linux-audit/blob/main/DS-to-
audit.MD

The above list is just to help you prioritize your rule writing better. Auditd in general
is going to be noisy and while exact impacts depends on your environment, if you
had to keep a ballpark figure in mind, I would start with a 10-15% increase in terms
of CPU utilization when running a security-centric auditd configuration on
“production” systems. We can go into the nuances of the % and what “production”
means but it’s only a ballpark figure to help you set expectations right. Have no
doubts, auditd is heavy, and depending on the nature of the endpoint you deploy on,
you can experience “heavy” in different flavors. For example, there was once a
production database server. The servers job was just to store data for a large public
facing web application with several users. This meant millions of database write
operations in a day. The auditd daemon was eating CPU and specifically the rules
that monitored file-action related syscalls (open, for example). Since the nature of
the database was to constantly perform several file operations, not only was the
audit.log being filled up with minimally useful entries but everytime a file operation
occurred (essentially always), auditd was monitoring and writing it into the logs. It’s
lucky that size of the audit.log is capped else, we would’ve had space issues as well.
Eventually, we decided the best course of action was to write exclusions for certain
folders that we know were constantly being written to and we placed this rule on top
of the one causing issues so it would match first. We saw similar impacts with
servers of a different business nature with regard to network-related syscalls
(connect). While I can't tell you exactly how auditd would impact your production
environment, I can share stories of how it impacted mine in hopes it will evoke
premature thoughts about yours. I would say the major performance consideration
with auditd comes in the form of CPU utilization and memory consumption but it
may be hard to determine until you actually see it in effect. My advice here is work
with your operations team, explain to them the potential issues auditd could cause
and their knowledge of the environment may help you arrive at a near-reality
expectation of production-behavior. Configure acceptable auditd log file sizes,
consider capping auditd resource utilization (check nice, cpulimit and cgroups), roll

out in batches and finally learn and adapt the configuration based on the learning.

Because auditd has so many different record types, monitoring all of them may not

feasible. I've found that, aside from being strict with the rules you write, excluding

https://lizyknows.medium.com/linux-auditd-for-threat-detection-d06c8b94 1505 717

11/2/24, 1:28 AM

message types can also be a nice way to trim down noise. Here are some message

Linux auditd for Threat Detection [Part 1] | by IzyKnows | Medium

types I think are worth monitoring from a security perspective

DAEMON_START

Record Type Meaning
ADD_USER Triggered when a user-space user account is added.
CRED_ACQ Triggered when a user acquires user-space credentials.
DAEMON_END Triggered when a daemon is successfully stopped.

Triggered when the auditd daemon is started.

Triggered to record arguments of the execve(2) system

EXECVE
call.
LOGIN Triggered to record relevant login information when a
user log in to access the system.
SOCKADDR Triggered to record a socket address.
SYSCALL Triggered to record a system call to the kernel.
USER_LOGIN Triggered when a user logs in.
USER_START Triggered when a user-space session is started.
USER_AUTH Triggered when a user-space authentication attempt is

detected.

When writing your audit.rules, it makes sense to explicitly specify which record

types are not to be recorded. We've found this as a good way to reduce noise from

auditd. You can do so using rules like the following
-a never,exclude -F msgtype=ANOM_ACCESS_FS

Each line in the auditd rule file gets evaluated sequentially and while compounding
rules are generally a good idea from a performance perspective, unfortunately you
cannot do that with the above exclusions. So for each msgtype you'd like to exclude,

you'd need to have it as a separate line. Thanks to sqall01 for pointing it out.

https://lizyknows.medium.com/linux-auditd-for-threat-detection-d06c8b94 1505 8/17

11/2/24, 1:28 AM

never,exclude
never,exclude
never,exclude
never,exclude
never,exclude
never,exclude
never,exclude
never,exclude
never,exclude
never,exclude
never,exclude

Linux auditd for Threat Detection [Part 1] | by IzyKnows | Medium

msgtype=ANOM_ABEND
msgtype=ANOM_ACCESS_FS
msgtype=ANOM ADD ACCT
msgtype=ANOM_AMTU_ FAIL
msgtype=ANOM_ CRYPTO_FATIL
msgtype=ANOM DEL ACCT
msgtype=ANOM_EXEC
msgtype=ANOM_LOGIN_ ACCT
msgtype=ANOM_LOGIN_FATILURES
msgtype=ANOM_ LOGIN_ LOCATION
msgtype=ANOM LOGIN_SESSIONS

never,exclude
never,exclude
never,exclude
never,exclude
never,exclude
never,exclude
never,exclude
never,exclude
never,exclude

msgtype=ANOM LOGIN_ TIME
msgtype=ANOM MAX DAC
msgtype=ANOM_MAX MAC
msgtype=ANOM_ MK _ EXEC
msgtype=ANOM_PROMISCUOUS
msgtype=ANOM MOD ACCT
msgtype=ANOM_ RBAC_FAIL
msgtype=ANOM_RBAC_INTEGRITY_FAIL
msgtype=ANOM ROOT_ TRANS

As for syscalls, the auditd engine intercepts each syscall that a program makes,
attempting to match it against system call rules. These rules, when sent to the
kernel, the syscall fields are all put into a mask so that one compare can determine
if the syscall matches or not. So in that case, combining syscalls in one rule is

efficient.

Additionally, you can find the entire list of record types here. The list of main and

auxiliary record types can also be found directly in the code.

An event on a Linux system may trigger multiple auditd events. There is one
primary event followed by auxiliary events of different record types. These auxiliary
events have supporting information for the event. The number of auxiliary records
an event may have depends upon the path a syscall takes through the kernel and
where auditd is designed to hook into it. At the moment, there’s no mapping table

between syscall and record types generated that I know of so I started to make one.

An example of an auxiliary record would be the record type CWD which you will see
many times in the audit.log. CWD records gives you the current working directory

from the main event took place. But you don't see it on the list above. Reason being,

https://lizyknows.medium.com/linux-auditd-for-threat-detection-d06c8b94 1505 9/17

11/2/24, 1:28 AM Linux auditd for Threat Detection [Part 1] | by lzyKnows | Medium
while it can be useful to know this in some cases, it’s also not the most critical piece
of information when you’re trying to detect bad activity and you can make some
good guesses based on the other data you have. We're trying to even out security vs.
feasibility and in doing so, you can’t have absolutely everything.

Closing Notes

I believe auditd can indeed be used as a means for detecting threats on Linux
endpoints, even in large environments. Throwing in a pre-configured rule set from
the internet will give you issues however. Knowing exactly what you want to monitor
and eliminating noisy events using methods described in this post, will help you

arrive at a configuration suitable for even large, complex environments.

The approach I would take is this — monitor your syscalls of interest (execve,
connect) right on top followed by the files/directories of importance and then
finally simpler rules to look for monitoring specific binaries like nmap, tshark, etc.
if that’s important to you. When monitoring files, don't forget to monitor your auditd
configuration as well. You don’t want an attacker to get away after tinkering with

your logging configs (Kudos to Security Shenanigans for this point!)

I plan to write another blog dedicated to tips to better analyze audit logs as well as
share sample log snippets of different activity types so you know what they look like
in the logs. Not sure when I'll get around to doing this, depends on how useful this

one is to begin with. Thanks for making it this far :)
Suggestions/feedback, please drop me a message on Twitter.
[22 October 2022] Yes, part 2 is in the making. Should be out in a few months :)

Link to Part 2.

Linux Blue Team Threat Hunting Cybersecurity Incident Response

https://lizyknows.medium.com/linux-auditd-for-threat-detection-d06c8b94 1505 10/17

